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Abstract. For an elliptic curve E over K, the Birch and Swinnerton-Dyer
conjecture predicts that the rank of Mordell-Weil group E(K) is equal to the
order of the zero of L(E/K , s) at s = 1. In this paper, we shall give a proof
for elliptic curves with complex multiplications. The key method of the proof
is to reduce the Galois action of infinite order on the Tate module of an elliptic
curve to that of finite order by using the p-adic Hodge theory. As a corollary,
we can determine whether a given natural number is a congruent number (con-
gruent number problem). This problem is one of the oldest unsolved problems in
mathematics.

1. Introduction

A natural number N is called a congruent number if it is the area of a rational
right-angled triangle. To determine whetherN is a congruent number is a difficult
problem which can be traced back at least a millennium and is the oldest major
unsolved problem in number theory. For example, it is easy to verify that 6 is a
congruent number since the sides lengths (3, 4, 5) give the right-angled triangle
whose area is 6. Furthermore, 5 and 7 are shown to be congruent numbers by
Fibonacci and Euler. On the other hand, Fermat showed that the square numbers
are never congruent numbers and, based on this experience, led to the famous
Fermat’s conjecture. In modern language, a natural number N is a congruent
number if and only if there exists a rational point (x, y) with y 6= 0 on the elliptic
curve y2 = x3 − N2x. The Birch and Swinnerton-Dyer conjecture which is one
of the millennium problems by Clay Mathematics Institute concerns the rational
points on the elliptic curves. The substantial developments are given by Coates-
Wiles, Gross-Zagier, Kolyvagin, Rubin, and so on. In this paper, we shall give
a proof for elliptic curves with complex multiplications which include the elliptic
curves of the form y2 = x3 −N2x and, as a corollary, can determine whether N
is a congruent number by the criterion of Tunnell.

Organization. Let E/K be an elliptic curve with complex multiplication
over an imaginary quadratic field K. Choose an algebraic closure K of K and
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consider the absolute Galois group GK = Gal(K/K). For a prime p, consider
the Tate module Vp(E) over Qp and put Vp(E) = Vp(E) if p splits in K (resp.
Vp(E) = Vp(E)⊗Qp Kp otherwise). Then, by the theory of Lubin-Tate, we have

a splitting Vp(E) = V (1) ⊕ V (2) of GK-modules where V (i) is a 1-dimensional
vector space. In Section 3.2, we show that V (i) has the Hodge-Tate weight (0, 0)
or (1, 1) in the sense of Section 2. Note that, contrary to the Hodge weights over
C, the action of Gal(K/Q) (and its restriction Gal(Kp/Qp)) does not exchange
the Hodge-Tate weights (see Remark 3.2 and 3.4). The key method of the proof
of the main theorem is to reduce the Galois action of infinite order on the Tate
module Vp(E) to that of finite order by using the fact that V (i) has the Hodge-
Tate weight (0, 0) or (1, 1) (see Section 2 for details). This means that the proof
of the main theorem is reduced to the methods in the algebraic number theory.

2. Algebraic Hecke character and Algebraic Galois character

In this section, we shall review the basic facts on the class field theory based
on [Y]. Let F be a number field and AF denote the adele ring of F . For each
place v of F , consider its completion Fv. If v is an infinite place of F , denote
the connected component of identity of F×

v by F×0
v and define F×0

∞ =
∏

v|∞ F×0
v .

Then, the global class field theory claims that the global Artin map ArtF induces
the isomorphism

ArtF : A×
F/F

×F×0
∞ ' Gab

F

where − denotes the closure in A×
F . Since the kernel of a continuous character of

A×
F/F

× is a closed set in A×
F/F

×, we have a one-to-one correspondence

{Galois characterR : GF → C×} ↔ {Hecke character Π : A×
F/F

× → C×,Π|F×0
∞

= 1}

where this correspondence is given by Π = R ◦ ArtF . Now, let us consider a p-

adic Hecke character Π : A×
F/F

× → Qp
×
. Since Qp

×
is totally disconnected, the

connected component of the identity on the left hand side is contained in Ker (Π)
and we obtain Π|F×0

∞
= 1. By the same method above, we have a one-to-one

correspondence

{Galois character R : GF → Qp
×} ↔ {Hecke character Π : A×

F/F
× → Qp

×}.

2.1. Algebraic Hecke character. Let Π : A×
F/F

× → C× be a Hecke character
and denote its restriction to F×

v by Πv. For an infinite place v of F , we say that
Πv is algebraic if there exist integers aτ ∈ Z such that we have

Πv(xv) =
∏

τ∈HomR(Fv ,C)

τ(xv)
aτ (∀xv ∈ F×0

v ).

Furthermore, if Πv is algebraic for all infinite places v in F , we say that Π is the
algebraic Hecke character (different from the usual definition) and that the
set of integers (aτ )τ (the number of this set is [F : Q]) is the weights of Π. For an
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algebraic Hecke character Π of weights (aτ )τ and a field isomorphism ι : Qp ' C,
define the p-adic Hecke character Πι by

Πι : x (∈ A×
F ) 7→ ι−1

(
Π(x)·

∏
τ∈HomQ(F,C)

τ(xv(τ))
−aτ

)
·

∏
τ∈HomQ(F,Qp)

τ(xv(τ))
aι◦τ (∈ Qp

×
).

The p-adic Hecke character Πι factors through A×
F/F

× and we have (Πι)v =
ι−1 ◦Πv for v ∤ p,∞. For a finite place v of F , since Πv factors through a discrete
group, (Πι)v is continuous. On the other hand, for an infinite place v, since (Πι)v
factors through a finite group, (Πι)v is also continuous. It follows that Πι is a
continuous character.

2.2. Algebraic Galois character. For an algebraic Hecke character Π of weights
(aτ )τ and a field isomorphism ι : Qp ' C, define the p-adic Galois character R
by Πι = R ◦ ArtF . Denote its restriction to the Weil group of Fv by Rv and put
Artv = ArtF |F×

v
. It follows that we have (Πι)v = Rv ◦ Artv. Then, for v | p and

τ ∈ HomQp(Fv,Qp), there exist bτ := aι◦τ ∈ Z and an open subgroup U ⊂ O×
v

(Ov: the ring of integers of Fv) such that we have

Rv ◦ Artv(xv) =
∏

τ∈HomQp (Fv ,Qp)

τ(xv)
bτ (∀xv ∈ U).

Note that, since the finite component of Π : A×
F/F

× → C× is a character of a
locally profinite group, the finite component of Π is trivial on an open subgroup
U of Ô×

F := (OF ⊗Z Ẑ)× (OF : the ring of integers of F ). We say that such a
p-adic Galois character R is an algebraic Galois character and that the set
of integers (bτ )τ (the number of this set is [F : Q]) is the Hodge-Tate weights of
R. Conversely, we can obtain the algebraic Hecke character Π from the algebraic
Galois character R by reversing the procedure. In particular, it follows from
the global class field theory that the algebraic Galois character of Hodge-Tate
weights (0)τ factors through a finite quotient since the corresponding algebraic
Hecke character Π satisfies Π|F×0

∞
= 1.

3. Elliptic curve and class field theory

3.1. Preliminary. Let E/K be an elliptic curve with complex multiplication
over an imaginary quadratic field K. Choose an algebraic closure K of K and
consider the absolute Galois group GK = Gal(K/K). For the Tate module
Vp(E) over Qp, put Vp(E) = Vp(E) if p splits in K (resp. Vp(E) = Vp(E)⊗Qp Kp

otherwise). Then, by the theory of Lubin-Tate, we have a splitting Vp(E) =
V (1) ⊕ V (2) of GK-modules where V (i) is a 1-dimensional vector space.

Lemma 3.1. With notations as above, V (i) has the Hodge-Tate weight 0 or 1.

Proof. Since the weight of an algebraic Hecke character (hence Hodge-Tate weight)
does not depend on the choice of prime p, we may assume that the prime p inerts
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in K. In this proof, we consider the tensor products over Kp. Let Cp denote the
p-adic completion of an algebraic closure of Qp. Since, by the comparison theorem
of the p-adic Hodge theory ([T], p.180, Cor.2), we have Cp⊗Vp(E) ' Cp⊕Cp(−1),
it suffices to show that we have Cp ⊗ V (1) ' Cp, Cp ⊗ V (2) ' Cp(−1) or
Cp ⊗ V (1) ' Cp(−1), Cp ⊗ V (2) ' Cp. Let α (resp. β) denote an element of
V (1) (resp. V (2)). Put

(∗) g(α) = sα and g(β) = tβ (g ∈ GKp , s, t ∈ K×
p ).

On the other hand, since 1⊗α and 1⊗β are elements of Cp⊗Vp ' Cp⊕Cp(−1),
we can write

(∗∗) 1⊗ α = a1+ bT and 1⊗ β = c1+ dT (a, b, c, d ∈ Cp)

where 1 (resp. T) denotes a basis of Cp (resp. Cp(−1)) such that we have
g(1) = 1 and g(T) = χ(g)T (g ∈ GKp , χ is the cyclotomic character). From the
presentation of (∗) and (∗∗), we have

g(a)1+ g(b)χ(g)T = s(a1+ bT) and g(c)1+ g(d)χ(g)T = t(c1+ dT)

and it follows that we obtain

g(a) = sa, g(b)χ(g) = sb and g(c) = tc, g(d)χ(g) = td.

Assume that we have b 6= 0 and then we have g(ab−1) = χ(g)ab−1. Since such
an element exists in Cp if and only if ab−1 = 0, this means that we have a = 0.
Therefore, we can obtain a = 0 or b = 0 (similarly c = 0 or d = 0) and it follows
from (∗∗) that V (i) has the Hodge-Tate weight 0 or 1. □
Remark 3.2. With notations as in the proof of Lemma 3.1, we show that each
Hodge-Tate weight does not depend on the embeddings Kp ↪→ Cp. Let h : Kp ↪→
Cp be the other embedding and Cp ⊗Kp Vp(E) is equipped with the action of

Gal(Kp/Qp) by Cp⊗h(Kp) Vp(E). Put H = Gal(Kp/Qab
p ) and Γ = GKp/H. Then,

D := (Cp ⊗ Vp(E))
H = CH

p ⊕ CH
p (−1) is equipped with the action of Γ. Since

h ∈ Gal(Kp/Qp) = Gal(Qab
p /Qp)/Γ commutes with the action of Γ, this induces

the Γ-equivariant map

h : D → h(D) (⊂ Cp ⊗ Vp(E)).

Then, we can write

(∗ ∗ ∗) h(1) = k1+ lT and h(T) = m1+ nT (k, l,m, n ∈ Cp).

On the other hand, for an element g ∈ Γ = Gal(Qab
p /Kp), we have

1). gh(1) = g(k)1+ g(l)χ(g)T = k1+ lT = hg(1),

2). gh(T) = g(m)1+ g(n)χ(g)T = χ(g)m1+ χ(g)nT = hg(T).

Thus, we obtain g(l) = χ(g)−1l and g(m) = χ(g)m and such elements l,m exist
in Cp if and only if l = m = 0. It follows from (∗∗∗) that we have h(Cp) = Cp and
h(Cp(−1)) = Cp(−1) as the action of h on Cp⊗Vp(E) = Cp⊕Cp(−1). Therefore,
each Hodge-Tate weight does not depend on the embeddings Kp ↪→ Cp. This



BSD CONJECTURE IN THE CM CASE AND THE CONGRUENT NUMBER PROBLEM 5

means that the Hodge-Tate weights of V (i) as a Qp-representation are (0, 0) or
(1, 1).

From now on, fix the notation such that V (1) (resp. V (2)) has the Hodge-Tate
weight 0 (resp. 1). The following is the key lemma which connects the unit
elements of the rings of integers of number fields and rational points on elliptic
curves.

Lemma 3.3. In the sense of §2, V (1) (resp. V (2)) has the Hodge-Tate weight
(0)τ (resp. (1)τ).

Proof. As in the proof of Lemma 3.1, we may assume that the prime p inerts in
K and we consider the Tate module Vp(E) over Kp. First of all, note that we
have the one-to-one correspondence between the algebraic Hecke character (the
absolute value) | · |: A×

Q/Q× → R×
>0 ⊂ C× of weight 1 and the algebraic Galois

character (the cyclotomic character) χ : GQ → Qp
×
of Hodge-Tate weight 1 in

the sense of §2. Further, by the base change for a number field F/Q, we also have
the one-to-one correspondence between | · | ◦NF/Q and χ|F where NF/Q denotes

the norm map from A×
F to A×

Q. Let σ(i) : GK → Aut(V (i)) denote the Galois

character obtained from the action of GK on Vp(E) and let σ
(i)
p be its restriction

to the Weil group of Kp. Denote the ring of integers of Kp by Op. Since V (1)

(resp. V (2)) has the Hodge-Tate weight 0 (resp. 1), there exists an open subgroup
U of O×

p such that we have ([F], p.143, 3.9.iv)

σ(1)
p ◦Artp(x) = NKp/Qp(1) = 1 and σ(2)

p ◦Artp(x) = NKp/Qp(x) = xτ(x) (∀x ∈ U)

where NKp/Qp denotes the norm map from Kp to Qp and 1 6= τ ∈ HomQp(Kp,Qp)

(see §2). This means that V (1) (resp. V (2)) has the Hodge-Tate weight (0)τ (resp.
(1)τ ). □

3.2. Global class field theory and Hecke character. Let σ(i) : GK →
Aut(V (i)) (i = 1, 2) denote the Galois character obtained from the action of
GK on Vp(E). By the theory of complex multiplication ([S], II.10.5), there exists
a Hecke character ωK over K such that, for a good prime v ∤ p, the prime element
℘v of K and the Frobenius element Frobv are related by

(]) ωK,v(℘v) = ι ◦ σ(1)
v (Frobv) and ωK,v(℘v) = ι ◦ σ(2)

v (Frobv)

for a field isomorphism ι : Qp ' C.
Remark 3.4. Since the both sides are connected just by a field isomorphism
ι : Qp ' C, this does not mean that the effect of the complex conjugation

changes σ(1) to σ(2) as a continuous character and we shall normalize the both
sides of (]) to obtain the continuous Hecke and Galois characters (see §2).

Let us denote ω
(1)
K = ωK and ω

(2)
K = ωK . Since V (1) (resp. V (2)(1)) has the

Hodge-Tate weight (0)τ , by making the infinite component of ω
(1)
K (resp. ω

(2)
K (1))
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trivial, we can obtain the algebraic Hecke character ω
(1)
K,a (resp. ω

(2)
K,a(1)) of

the weight (0)ι◦τ . Conversely, the Galois character which corresponds to the

algebraic Hecke character ω
(1)
K,a (resp. ω

(2)
K,a(1)) becomes the algebraic Galois

character σ
(1)
a (resp. σ

(2)
a (1)) of the Hodge-Tate weight (0)τ and factors through

a finite abelian extension K1/K (resp. K2/K) by the global class field theory. In

this situation, the effect of the complex conjugation changes σ
(1)
a (resp. ω

(1)
K,a) to

σ
(2)
a (1) (resp. ω

(2)
K,a(1)) as a continuous character.

Remark 3.5. Note that these algebraic characters are different from the former
ones up to the normalization and that the former characters never factor through
finite quotients since the Galois actions on the Tate module Vp(E) are of infinite
order.

Example 3.6. Consider the elliptic curve y2 = x3 − Dx (D ∈ Z\{0}) which
has the complex multiplication by K = Q(i). Let p denote the prime ideal of Z
such that p does not divide 2D. By making the infinite components of the Hecke
characters trivial, we shall obtain the algebraic Hecke characters.

a). In the case of p ≡ 3 (mod 4), we have ω
(1)
K (p) = −p and we normalize this

character as ω
(1)
K,a(p) = −1. Then, its normalized complex conjugation ω

(2)
K,a(1)(p)

is also given by ω
(2)
K,a(1)(p) = −1.

b). Consider the case of p ≡ 1 (mod 4) and then the prime p decomposes as
p = ππ̄ where π denotes the element of Z[i] such that we have π ≡ 1 (mod 2+2i).

Let ℘ denote the prime ideal ℘ = (π) in Z[i]. It is known that we have ω
(1)
K (℘) =(

D
π

)
4
π or

(
D
π

)
4
π̄ (depending on the choice of ι : Qp ' C) where

( ·
π

)
4
denotes

the 4th-power residue symbol. Assume that we have ω
(1)
K (℘) =

(
D
π

)
4
π. In this

case, we normalize this character as ω
(1)
K,a(℘) =

(
D
π

)
4
and its normalized complex

conjugation ω
(2)
K,a(1)(℘) is given by ω

(2)
K,a(1)(℘) =

(
D
π

)
4
.

Since one of these local eigenvalues of normalized Hecke characters is a root of
unity (i.e. weight 0), this forces the normalized Hecke L-function to be of weight
0 and thus the normalized Hecke characters factor through global finite Galois
extensions.

3.3. Hecke L-function and Dedekind zeta function. Since the Galois char-
acter σ

(1)
a is non-trivial, we can show that L(ω

(1)
K,a, s) does not have any poles or

zeros at s = 1. Furthermore, we can deduce that the order of L(ω
(2)
K,a(1), s) |s=0

is the same as that of Dedekind zeta function ζK2(s) |s=0 ([N], p.502, (8.5)).

4. Rational points and unit elements

Choose a prime p which inerts in K such that the extensions K1/K and K2/K
are of degree prime to p. Since E has the complex multiplication by K and the
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prime p inerts in K, the Tate module Vp(E) over Qp is a one dimensional Kp-
vector space. Further, recall that Vp(E) over Kp splits as Vp(E) = V (1) ⊕ V (2).
The assumption that the extensions K1/K and K2/K are of degree prime to p is
used in ([Ru], p.24-27).

4.1. Top exact sequence. Let T (1) denote a free of rank 1 module over Op (the

ring of integers of Kp) on which GK acts via σ
(1)
a and put W (1) = (T (1)⊗Q)/T (1).

Then, it is known that we have

Sel(K,W (1)) ' Hom(AK1 ,W
(1))Gal(K1/K)

where AL denotes the ideal class group of L ([Ru], p.24). Thus, we have an exact

sequence 0 → Ker (f) → Sel(K,W (1))
f−→ Sha(K,W (1))p∞ → 0 of finite torsion

modules over Kp/Op.

4.2. Middle exact sequence. In §3.2, for the Galois representation σp := σ(1)⊕
σ(2) of GK on Vp(E) over Kp, we obtain the normalized Galois representation

σp,a := σ
(1)
a ⊕ σ

(2)
a . Write the same notations for their restrictions to Vp(E).

Since the Tate module Vp(E) over Qp is a one dimensional Kp-vector space, we
can write σp,a = σp · ψp for some character ψp of GK over Kp. On the other
hand, since we have End(E) ⊗ Qp ' End(Vp(E)) : σ ⊗ 1 7→ σp by the isogeny
theorem of Faltings, there exists an element ψ ∈ End(E) such that we have
End(E(ψ))⊗Qp ' End(Vp(E)(ψp)) : (σ · ψ)⊗ 1 7→ σp · ψp = σp,a.

4.3. Bottom exact sequence. Let T (2) denote a free of rank 1 module over

Op on which GK acts via σ
(2)
a and put W (2) = (T (2) ⊗ Q)/T (2). The following

notation is used in ([Ru], p25).

Notation: For a Z[GK ]-module B, we define the χ-component of B by

Bχ = {b ∈ (B ⊗Z Zp)⊗Zp Op | g(b) = χ(g)b (∀g ∈ GK)}.
With this notation, we have an exact sequence of Kp/Op-modules ([Ru], p.26)

0 → (O×
K2

⊗Qp/Zp)(σ
(2)
a (1))−1 → Sel(K,W (2)) → (AK2)

(σ
(2)
a (1))−1 → 0.

4.4. Commutative diagram.

Lemma 4.1. We have H0(GK ,W
(2)) = 0 and H2(GK ,W

(1)) = 0.

Proof. Since GK acts on W (2) via the character σ
(2)
a , the GK-invariant part

of W (2) is 0 and thus we obtain H0(GK ,W
(2)) = 0. As for H2(GK ,W

(1)),

since GK acts on W (1) via the finite character σ
(1)
a , we may assume that the

extension K1/K is the finite cyclic extension and we obtain H2(GK ,W
(1)) =

H2(Gal(K1/K),W (1)) = (W (1))Gal(K1/K)/NGal(K1/K)(W
(1)) = 0 where NG is the

norm map NG(a) =
∑

g∈G ga. □
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With this lemma, we have the vanishing of the cohomology groups [ and \
below and thus we obtain the following commutative diagram of Kp/Op-modules
where all of the horizontal and vertical lines are exact.

♭ = 0y
0 −−−−−→ Ker (f) −−−−−→ Sel(K,W (1))

f−−−−−→ Sha(K,W (1))p∞ −−−−−→ 0y y y
0 −−−−−→ E(ψ)GK ⊗Kp/Op −−−−−→ Sel(K,E(ψ)p∞ ) −−−−−→ Sha(K,E(ψ))p∞ −−−−−→ 0y y y
0 −−−−−→ (O×

K2
⊗ Qp/Zp)(σ

(2)
a (1))−1 −−−−−→ Sel(K,W (2)) −−−−−→ (AK2

)(σ
(2)
a (1))−1 −−−−−→ 0.y

♮ = 0

Lemma 4.2. If we have ords=1L(E(ψ)/K , s) = rank(E(ψ)GK ), this leads to
ords=1L(E/K , s) = rank(E(K)).

Proof. This follows from ([Ro], p.127) by reversing the procedure and using the
fact that all conjugates E(ψ)(ψ−1

c ) ' c−1(E(ψ)(ψ−1
c )) = c−1(E(ψ))(ψ−1) '

E(ψ)(ψ−1) = E (c ∈ Aut(C/Q)) give the same L-functions. □
Lemma 4.3. The rank of O×

K2
modulo torsions over Z is equal to that of (O×

K2
⊗

Qp/Zp)(σ
(2)
a (1))−1

over Kp/Op (see the notation in §4.3).

Proof. For simplicity, write χ = σ
(2)
a (1) and B = (O×

K2
⊗ Qp/Zp) ⊗Zp Op. Since

K2 is the fixed field of the kernel of the finite character χ, we may assume that
the extension K2/K is the finite cyclic extension. Thus, we can write B = ⊕Bχi

([Ru], p.25). If n denotes the rank of B over Kp/Op, all components Bχi
have

the same rank n over Kp/Op; otherwise the character χ factors through a smaller
field. □

4.5. Main results.

Theorem 4.4. For an elliptic curve E/K with complex multiplication over an
imaginary quadratic field K, we have

ords=1L(E/K , s) = rank(E(K)).

Proof. As for the left vertical in the commutative diagram above, it follows from
the snake lemma that the free rank of E(ψ)GK is equal to that of the unit group
O×
K2

(Lemma 4.3). Thus, we have ords=1L(E(ψ)/K , s) = rank(E(ψ)GK ) (§3.3)
and this leads to ords=1L(E/K , s) = rank(E(K)) (Lemma 4.2). □

In particular, if E is defined over Q, since we have L(E/K , s) = L(E/Q, s)
2 and

rank(E(K)) = 2·rank(E(Q)) ([M], §1), we obtain ords=1L(E/Q, s) = rank(E(Q)).
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Therefore, it follows that we can determine whether a given natural numberN is a
congruent number by the criterion of Tunnell for the equation EN : y2 = x3−N2x.
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